FUNCTIONAL ANALYSIS – 2010-2

1 Topological and metric spaces

1.1 Basic Definitions

Definition 1.1 (Topology). Let S be a set. A subset \mathcal{T} of the set $\mathfrak{P}(S)$ of subsets of S is called a *topology* iff it has the following properties:

- $\emptyset \in \mathcal{T}$ and $S \in \mathcal{T}$.
- Let $\{U_i\}_{i\in I}$ be a family of elements in \mathcal{T} . Then $\bigcup_{i\in I} U_i \in \mathcal{T}$.
- Let $U, V \in \mathcal{T}$. Then $U \cap V \in \mathcal{T}$.

A set equipped with a topology is called a *topological space*. The elements of \mathcal{T} are called the *open* sets in S. A complement of an open set in S is called a *closed* set.

Definition 1.2. Let S be a topological space and $x \in S$. Then a subset $U \subseteq S$ is called a *neighborhood* of x iff it contains an open set which in turn contains x.

Definition 1.3. Let S be a topological space and U a subset. The *closure* \overline{U} of U is the smallest closed set containing U. The *interior* $\overset{\circ}{U}$ of U is the largest open set contained in U.

Definition 1.4 (base). Let \mathcal{T} be a topology. A subset \mathcal{B} of \mathcal{T} is called a *base* of \mathcal{T} iff the elements of \mathcal{T} are precisely the unions of elements of \mathcal{B} . It is called a *subbase* iff the elements of \mathcal{T} are precisely the finite intersections of unions of elements of \mathcal{B} .

Proposition 1.5. Let S be a set and \mathcal{B} a subset of $\mathfrak{P}(S)$. \mathcal{B} is the base of a topology on S iff it satisfies all of the following properties:

- $\emptyset \in \mathcal{B}$.
- For every $x \in S$ there is a set $U \in \mathcal{B}$ such that $x \in U$.
- Let $U, V \in \mathcal{B}$. Then there exits a family $\{W_{\alpha}\}_{\alpha \in A}$ of elements of \mathcal{B} such that $U \cap V = \bigcup_{\alpha \in A} W_{\alpha}$.

Proof. Exercise.

Definition 1.6 (Filter). Let S be a set. A subset \mathcal{F} of the set $\mathfrak{P}(S)$ of subsets of S is called a *filter* iff it has the following properties:

- $\emptyset \notin \mathcal{F}$ and $S \in \mathcal{F}$.
- Let $U, V \in \mathcal{F}$. Then $U \cap V \in \mathcal{F}$.
- Let $U \in \mathcal{F}$ and $U \subseteq V \subseteq S$. Then $V \in \mathcal{F}$.

Definition 1.7. Let \mathcal{F} be a filter. A subset \mathcal{B} of \mathcal{F} is called a *base* of \mathcal{F} iff every element of \mathcal{F} contains an element of \mathcal{B} .

Proposition 1.8. Let S be a set and $\mathcal{B} \subseteq \mathfrak{P}(S)$. Then \mathcal{B} is the base of a filter on S iff it satisfies the following properties:

- $\emptyset \notin \mathcal{B}$ and $\mathcal{B} \neq \emptyset$.
- Let $U, V \in \mathcal{B}$. Then there exists $W \in \mathcal{B}$ such that $W \subseteq U \cap V$.

Proof. <u>Exercise</u>.

Let S be a topological space and $x \in S$. It is easy to see that the set of neighborhoods of x forms a filter. It is called the *filter of neighborhoods* of x and denoted by \mathcal{N}_x . The family of filters of neighborhoods in turn encodes the topology:

Proposition 1.9. Let S be a topological space and $\{\mathcal{N}_x\}_{x\in S}$ the family of filters of neighborhoods. Then a subset U of S is open iff for every $x \in U$, there is a set $W_x \in \mathcal{N}_x$ such that $W_x \subseteq U$.

Proof. Exercise.

Proposition 1.10. Let S be a set and $\{\mathcal{F}_x\}_{x\in S}$ an assignment of a filter to every point in S. Then this family of filters are the filters of neighborhoods of a topology on S iff they satisfy the following properties:

- 1. For all $x \in S$, every element of \mathcal{F}_x contains x.
- 2. For all $x \in S$ and $U \in \mathcal{F}_x$, there exists $W \in \mathcal{F}_x$ such that $U \in \mathcal{F}_y$ for all $y \in W$.

Proof. If $\{\mathcal{F}_x\}_{x\in S}$ are the filters of neighborhoods of a topology it is clear that the properties are satisfied: 1. Every neighborhood of a point contains the point itself. 2. For a neighborhood U of x take W to be the interior of U. Then W is a neighborhood for each point in W.

Conversely, suppose $\{\mathcal{F}_x\}_{x\in S}$ satisfies Properties 1 and 2. Given x we define an open neighborhood of x to be an element $U \in \mathcal{F}_x$ such that $U \in \mathcal{F}_y$ for all $y \in U$. This definition is not empty since at least S itself is an open neighborhood of every point x in this way. Moreover, for any $y \in U$, by the same definition, U is an open neighborhood of y. Now take $y \notin U$. Then, by Property 1, U is not an open neighborhood of y. Thus, we obtain a good definition of open set: An open set is a set that is an open neighborhood for one (and thus any) of its points. We also declare the empty set to be open.

We proceed to verify the axioms of a topology. Property 1 of Definition 1.1 holds since S is open and we have declared the empty set to be open. Let $\{U_{\alpha}\}_{\alpha \in I}$ be a family of open sets and consider their union $U = \bigcup_{\alpha \in I} U_{\alpha}$. Assume U is not empty (otherwise it is trivially open) and pick $x \in U$. Thus, there is $\alpha \in I$ such that $x \in U_{\alpha}$. But then $U_{\alpha} \in \mathcal{F}_x$ and also $U \in \mathcal{F}_x$. This is true for any $x \in U$. Hence, U is open. Consider now open sets U and V. Assume the intersection $U \cap V$ to be non-empty (otherwise its openness is trivial) and pick a point x in it. Then $U \in \mathcal{F}_x$ and $V \in \mathcal{F}_x$ and therefore $U \cap V \in \mathcal{F}_x$. The same is true for any point in $U \cap V$, hence it is open.

It remains to show that $\{\mathcal{F}_x\}_{x\in S}$ are the filters of neighborhoods for the topology just defined. It is already clear that any open neighborhood of a point x is contained in \mathcal{F}_x . We need to show that every element of \mathcal{F}_x contains an open neighborhood of x. Take $U \in \mathcal{F}_x$. We define W to be the set of points y such that $U \in \mathcal{F}_y$. This cannot be empty as $x \in W$. Moreover, Property 1 implies $W \subseteq U$. Let $y \in W$, then $U \in \mathcal{F}_y$ and we can apply Property 2 to obtain a subset $V \subseteq W$ with $V \in \mathcal{F}_y$. But this implies $W \in \mathcal{F}_y$. Since the same is true for any $y \in W$ we find that W is an open neighborhood of x. This completes the proof. \Box

Definition 1.11 (Continuity). Let S, T be topological spaces. A map $f : S \to T$ is called *continuous* iff for every open set $U \in T$ the preimage $f^{-1}(U)$ in S is open. We denote the space of continuous maps from S to T by C(S,T).

Proposition 1.12. Let S, T be topological spaces and $f : S \to T$ a map. f is continuous iff for every $x \in S : f^{-1}(\mathcal{N}_{f(x)}) \subseteq \mathcal{N}_x$.

Proof. <u>Exercise</u>.

Proposition 1.13. Let S, T, U be topological spaces, $f \in C(S, T)$ and $g \in C(T, U)$. Then, the composition $g \circ f : S \to U$ is continuous.

Proof. Immediate.

Definition 1.14 (Induced Topology). Let S be a topological space and U a subset. Consider the topology given on U by the intersection of each open set on S with U. This is called the *induced topology* on U.

Definition 1.15 (Product Topology). Let S be the cartesian product $S = \prod_{\alpha \in I} S_{\alpha}$ of a family of topological spaces. Consider subsets of S of the form $\prod_{\alpha \in I} U_{\alpha}$ where finitely many U_{α} are open sets in S_{α} and the others coincide with the whole space $U_{\alpha} = S_{\alpha}$. These subsets form the base of a topology on S which is called the *product topology*.

Proposition 1.16. Let S, T, X be topological spaces and $f \in C(S \times T, X)$. Then the map $f_x : T \to X$ defined by $f_x(y) = f(x, y)$ is continuous for every $x \in S$.

Proof. Fix $x \in S$. Let U be an open set in X. We want to show that $W := f_x^{-1}(U)$ is open. We do this by finding for any $y \in W$ an open neighborhood of y contained in W. If W is empty we are done, hence assume that this is not so. Pick $y \in W$. Then $(x, y) \in f^{-1}(U)$ with $f^{-1}(U)$ open by continuity of f. Since $S \times T$ carries the product topology there must be open sets $V_x \subseteq S$ and $V_y \subseteq T$ with $x \in V_x$, $y \in V_y$ and $V_x \times V_y \subseteq f^{-1}(U)$. But clearly $V_y \subseteq W$ and we are done.

Definition 1.17. Let \mathcal{T}_1 , \mathcal{T}_2 be topologies on the set S. Then, \mathcal{T}_1 is called *finer* than \mathcal{T}_2 and \mathcal{T}_2 is called *coarser* than \mathcal{T}_1 iff all open sets of \mathcal{T}_2 are also open sets of \mathcal{T}_1 .

Exercise 1. Let S be the cartesian product $S = \prod_{\alpha \in I} S_{\alpha}$ of a family of topological spaces. Show that the product topology is the coarsest topology on S that makes all projections $S \to S_{\alpha}$ continuous.

1.2 Some properties of topological spaces

In a topological space it is useful if two distinct points can be distinguished by the topology. A strong form of this distinguishability is the *Hausdorff* property.

Definition 1.18 (Hausdorff). Let S be a topological space. Assume that given any two distinct points $x, y \in S$ we can find open sets $U, V \subset S$ such that $x \in U$ and $y \in V$ and $U \cap V = \emptyset$. Then, S is said to have the Hausdorff property. We also say that S is a Hausdorff space.

Definition 1.19. Let S be a topological space. S is called *first-countable* iff for each point in S there exists a countable base of its filter of neighborhoods. S is called *second-countable* iff the topology of S admits a countable base.

Definition 1.20. Let S be a topological space and $U, V \subseteq S$ subsets. U is called *dense* in V iff $V \subseteq \overline{U}$.

Definition 1.21 (separable). A topological space is called *separable* iff it contains a countable dense subset.

Proposition 1.22. A topological space that is second-countable is separable.

Proof. <u>Exercise</u>.

Definition 1.23 (open cover). Let S be a topological space and $U \subseteq S$ a subset. A family of open sets $\{U_{\alpha}\}_{\alpha \in A}$ is called an *open cover* of U iff $U \subseteq \bigcup_{\alpha \in A} U_{\alpha}$.

Proposition 1.24. Let S be a second-countable topological space and $U \subseteq S$ a subset. Then, every open cover of U contains a countable subcover.

Proof. <u>Exercise</u>.

Definition 1.25 (compact). Let S be a topological space and $U \subseteq S$ a subset. U is called *compact* iff every open cover of U contains a finite subcover.

Proposition 1.26. A closed subset of a compact space is compact. A compact subset of a Hausdorff space is closed.

Proof. Exercise.

Proposition 1.27. The image of a compact set under a continuous map is compact.

Proof. Exercise.

1.3 Sequences and convergence

Definition 1.28 (convergence of sequences). Let $x := \{x_n\}_{n \in \mathbb{N}}$ be a sequence of points in a topological space S. We say that x has an *accumulation point (or limit point)* p iff for every neighborhood U of x we have $x_k \in U$ for infinitely many $k \in \mathbb{N}$. We say that x converges to a point p iff for any neighborhood U of p there is a number $n \in \mathbb{N}$ such that for all $k \geq n$: $x_k \in U$.

Proposition 1.29. Let S be a first-countable topological space and $x = \{x_n\}_{n \in \mathbb{N}}$ a sequence in S with accumulation point p. Then, x has a subsequence that converges to p.

Proof. By first-countability choose a countable neighborhood base $\{U_n\}_{n\in\mathbb{N}}$ at p. Now consider the family $\{W_n\}_{n\in\mathbb{N}}$ of open neighborhoods $W_n := \bigcap_{k=1}^n U_k$ at p. It is easy to see that this is again a countable neighborhood base at p. Moreover, it has the property that $W_n \subseteq W_m$ if $n \ge m$. Now, Choose $n_1 \in \mathbb{N}$ such that $x_{n_1} \in W_1$. Recursively, choose $n_{k+1} > n_k$ such that $x_{n_{k+1}} \in W_{k+1}$. This is possible since W_{k+1} contains infinitely many points of x. Let V be a neighborhood of p. There exists some $k \in \mathbb{N}$ such that $U_k \subseteq V$. By construction, then $W_m \subseteq W_k \subseteq U_k$ for all $m \ge k$ and hence $x_{n_m} \in V$ for all $m \ge k$. Thus, the subsequence $\{x_{n_m}\}_{m\in\mathbb{N}}$ converges to p.

Definition 1.30 (convergence of filters). A filter \mathcal{F} on a topological space S is said to *converge* to an element $p \in S$ iff every neighborhood of p is contained in \mathcal{F} , i.e., $\mathcal{N}_p \subseteq \mathcal{F}$.

Let $x = \{x_n\}_{n \in \mathbb{N}}$ be a sequence of points in a topological space S. We define the filter \mathcal{F}_x associated with this sequence as follows: \mathcal{F}_x contains all the subsets U of S such that U contains all x_n , except possibly finitely many.

Proposition 1.31. Let $x := \{x_n\}_{n \in \mathbb{N}}$ be a sequence of points in a topological space S. Then x converges to a point $p \in S$ iff the associated filter \mathcal{F}_x converges to p.

Proof. Exercise.

Proposition 1.32. Let S be a topological space and $U \subseteq S$ a subset. Consider the set A_U of filters on S that contain U. Then, the closure \overline{U} of U coincides with the set of points to which some element in A_U converges.

Proof. If $U = \emptyset$, then A_U is empty and the proof is trivial. Assume the contrary. If $x \in \overline{U}$, then the intersection of U with the filter \mathcal{N}_x of neighborhoods of x generates a filter that contains U and converges to x as desired. If $x \notin \overline{U}$, then there exists a neighborhood V of x such that $U \cap V = \emptyset$. Suppose a filter \mathcal{F} converges to x. Then \mathcal{F} must contain V, hence cannot contain U, i.e., $\mathcal{F} \notin A_U$.

Definition 1.33. Let S be a topological space and $U \subseteq S$ a subset. Consider the set B_U of sequences of elements of U. Then the set \overline{U}^s consisting of the points to which some element of B_U converges is called the *sequential closure* of U.

Proposition 1.34. Let S be a topological space and $U \subseteq S$ a subset. Then, $U \subseteq \overline{U}^s \subseteq \overline{U}$. If, moreover, S is first-countable, then $\overline{U}^s = \overline{U}$.

Proof. Exercise.

Proposition 1.35. Let S, T be topological spaces, $f \in C(S, T)$ and $\{x_n\}_{n \in \mathbb{N}}$ a sequence in S converging to p. Then, the sequence $f\{(x_n)\}_{n \in \mathbb{N}}$ in T converges to f(p).

Proof. <u>Exercise</u>.

Proposition 1.36. Let S be a Hausdorff topological space, \mathcal{F} a filter on S converging to a point $p \in S$. Then \mathcal{F} does not converge to any other point in S.

Proof. <u>Exercise</u>.

Corollary 1.37. Let S be Hausdorff space and $\{x_n\}_{n\in\mathbb{N}}$ a sequence in S which converges to a point $p \in S$. Then, $\{x_n\}_{n\in\mathbb{N}}$ does not converge to any other point in S.

Definition 1.38. Let S be a topological space and $U \subseteq S$ a subset. U is called *limit point compact* iff every sequence in U has an accumulation point. U is called *sequentially compact* iff every sequence in U contains a converging subsequence.

Proposition 1.39. Sequential compactness implies limit point compactness. In a first-countable space the converse is also true.

Proof. <u>Exercise</u>.

Proposition 1.40. A compact space is limit point compact.

Proof. Consider a sequence x in a compact space S. Suppose x does not have an accumulation point. Then, for each point $p \in S$ we can choose an open neighborhood U_p which contains only finitely many points of x. However, by compactness, S is covered by finitely many of the sets U_p . But their union can only contain a finite number of points of x, a contradiction. \Box

1.4 Metric spaces

Definition 1.41. Let S be a set and $d : S \times S \to \mathbb{R}^+_0$ a map with the following properties:

- $d(x,y) = d(y,x) \quad \forall x, y \in S.$ (symmetry)
- $d(x,z) \le d(x,y) + d(y,z) \quad \forall x, y, z \in S.$ (triangle inequality)

• $d(x,y) = 0 \implies x = y \quad \forall x, y \in S.$ (definiteness)

Then d is called a *metric* on S. S is also called a *metric space*.

Definition 1.42. If in the above definition the third condition is weakened to

• $d(x,x) = 0 \quad \forall x \in S,$

then d is called a *pseudometric* and S a *pseudometric space*.

Definition 1.43. Let S be a pseudometric space, $x \in S$ and r > 0. Then the set $B_r(x) := \{y \in S : d(x, y) < r\}$ is called the *open ball* of radius r centered around x in S. The set $\overline{B}_r(x) := \{y \in S : d(x, y) \le r\}$ is called the *closed ball* of radius r centered around x in S.

Proposition 1.44. Let S be a pseudometric space. Then, the open balls in S together with the empty set form the basis of a topology on S. This topology is first-countable and such that closed balls are closed. Moreover, the topology is Hausdorff iff S is metric.

Proof. <u>Exercise</u>.

Definition 1.45. A topological space is called *metrizable* iff there exists a metric such that the open balls given by the metric are a basis of its topology.

Proposition 1.46. Let S be a set equipped with two metrics d^1 and d^2 . Then, the topology generated by d^2 is finer than the topology generated by d^1 iff for all $x \in S$ and $r_1 > 0$ there exists $r_2 > 0$ such that $B^2_{r_2}(x) \subseteq B^1_{r_1}(x)$. In particular, d^1 and d^2 generate the same topology iff the condition holds both ways.

Proof. <u>Exercise</u>.

Proposition 1.47 (epsilon-delta criterion). Let S, T be metric spaces and $f: S \to T$ a map. Then, f is continuous iff for every $x \in S$ and every $\epsilon > 0$ there exists $\delta > 0$ such that $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$.

Proof. Exercise.

1.5 Elementary properties of metric spaces

Proposition 1.48. Let S be a metric space and $x := \{x_n\}_{n \in \mathbb{N}}$ a sequence in S. Then x converges to $p \in S$ iff for any $\epsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$: $d(x_n, p) < \epsilon$.

Proof. Immediate.

Definition 1.49. Let S be a metric space and $x := \{x_n\}_{n \in \mathbb{N}}$ a sequence in S. Then x is called a *Cauchy sequence* iff for all $\epsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that for all $n, m \ge n_0 : d(x_n, x_m) < \epsilon$.

Proposition 1.50. Any converging sequence in a metric space is a Cauchy sequence.

Proof. Exercise.

Proposition 1.51. Suppose x is a Cauchy sequence in a metric space. If p is accumulation point of x then x converges to p.

Proof. <u>Exercise</u>.

Definition 1.52. Let S be a metric space and $U \subseteq S$ a subset. If every Cauchy sequence in U converges to a point in U then U is called *complete*.

Proposition 1.53. A complete subset of a metric space is closed. A closed subset of a complete metric space is complete.

Proof. Exercise.

Definition 1.54 (Totally boundedness). Let S be a metric space. A subset $U \subseteq S$ is called *totally bounded* iff for any r > 0 the set U admits a cover by finitely many open balls of radius r.

Proposition 1.55. A subset of a metric space is compact iff it is complete and totally bounded.

Proof. We first show that compactness implies totally boundedness and completeness. Let U be a compact subset. Then, for r > 0 cover U by open balls of radius r centered at every point of U. Since U is compact, finitely many balls will cover it. Hence, U is totally bounded. Now, consider a Cauchy sequence x in U. Since U is compact x must have an accumulation point $p \in U$ (Proposition 1.40) and hence (Proposition 1.51) converge to p. Thus, U is complete.

We proceed to show that completeness together with totally boundedness imply compactness. Let U be a complete and totally bounded subset. Assume U is not compact and choose a covering $\{U_{\alpha}\}_{\alpha\in A}$ of U that does not admit a finite subcovering. On the other hand, U is totally bounded and admits a covering by finitely many open balls of radius 1/2. Hence, there must be at least one such ball B_1 such that $C_1 := B_1 \cap U$ is not covered by finitely many U_{α} . Choose a point x_1 in C_1 . Observe that C_1 itself is totally bounded. Inductively, cover C_n by finitely many open balls of radius $2^{-(n+1)}$. For at least one of those, call it $B_{n+1}, C_{n+1} := B_{n+1} \cap C_n$ is not covered by finitely many U_{α} . Choose a point x_{n+1} in C_{n+1} . This process yields a Cauchy sequence $x := \{x_k\}_{k \in \mathbb{N}}$. Since U is complete the sequence converges to a point $p \in U$. There must be $\alpha \in A$ such that $p \in U_{\alpha}$. Since U_{α} is open there exists r > 0 such that $B_r(p) \subseteq U_{\alpha}$. This implies, $C_n \subseteq U_{\alpha}$ for all $n \in \mathbb{N}$ such that $2^{-n+1} < r$. However, this is a contradiction to the C_n not being finitely covered. Hence, U must be compact.

Proposition 1.56. The notions of compactness, limit point compactness and sequential compactness are equivalent in a metric space.

Proof. Exercise.

Proposition 1.57. A totally bounded metric space is second-countable.

Proof. <u>Exercise</u>.

Proposition 1.58. The notions of separability and second-countability are equivalent in a metric space.

Proof. Exercise.

Theorem 1.59 (Baire's Theorem). Let S be a complete metric space and $\{U_n\}_{n\in\mathbb{N}}$ a sequence of open and dense subsets of S. Then, the intersection $\bigcap_{n\in\mathbb{N}} U_n$ is dense in S.

Proof. Set $U := \bigcap_{n \in \mathbb{N}} U_n$. Let V be an arbitrary open set in S. It suffices to show that $V \cap U \neq \emptyset$. To this end we construct a sequence $\{x_n\}_{n \in \mathbb{N}}$ of elements of S and a sequence $\{\epsilon_n\}_{n \in \mathbb{N}}$ of positive numbers. Choose $x_1 \in U_1 \cap V$ and then $0 < \epsilon_1 \leq 1$ such that $\overline{B_{\epsilon_1}(x_1)} \subseteq U_1 \cap V$. Now, consecutively choose $x_{n+1} \in U_{n+1} \cap B_{\epsilon_n/2}(x_n)$ and $0 < \epsilon_{n+1} < 2^{-n}$ such that $\overline{B_{\epsilon_{n+1}}(x_{n+1})} \subseteq U_{n+1} \cap B_{\epsilon_n}(x_n)$. The sequence $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy since by construction $d(x_n, x_{n+1}) < 2^{-n}$ for all $n \in \mathbb{N}$. So by completeness it converges to some point $x \in S$. Indeed, $x \in \overline{B_{\epsilon_1}(x_1)} \subseteq V$. On the other

hand, $x \in \overline{B_{\epsilon_n}(x_n)} \subseteq U_n$ for all $n \in \mathbb{N}$ and hence $x \in U$. This completes the proof.

Exercise 2. Give an example of a set S, a sequence x in S and two metrics d^1 and d^2 on S that generate the same topology, but such that x is Cauchy with respect to d^1 , but not with respect to d^2 .

1.6 Completion of metric spaces

Often it is desirable to work with a complete metric space when one is only given a non-complete metric space. To this end one can construct the *completion* of a metric space. This is detailed in the following exercise.

Exercise 3. Let S be a metric space.

- Let $x := \{x_n\}_{n \in \mathbb{N}}$ and $y := \{y_n\}_{n \in \mathbb{N}}$ be Cauchy sequences in S. Show that the limit $\lim_{n \to \infty} d(x_n, y_n)$ exists.
- Let T be the set of Cauchy sequences in S. Define the function $d : T \times T \to \mathbb{R}^+_0$ by $\tilde{d}(x,y) := \lim_{n \to \infty} d(x_n, y_n)$. Show that \tilde{d} defines a pseudometric on T.
- Show that $a \sim b \iff \tilde{d}(a,b) = 0$ defines an equivalence relation on T.
- Show that $\overline{S} := T/\sim$ is naturally a metric space.
- Show that \$\overline{S}\$ is complete. [Hint: First show that given a Cauchy sequence \$x\$ in \$S\$ and a subsequence \$x'\$ of \$x\$ we have \$\overline{d}(x,x') = 0\$. That is, \$x ~ y\$ in \$T\$. Use this to show that for any Cauchy sequence \$x\$ in \$S\$ an equivalent Cauchy Sequence \$x'\$ can be constructed which has a specific asymptotic behavior. For example, \$x'\$ can be made to satisfy \$d(x'_n, x'_m) < \frac{1}{min(m,n)}\$. Now a Cauchy sequence \$\overline{x}\$ can be made to satisfy \$d(x'_n, x'_m) < \frac{1}{min(m,n)}\$. Now a Cauchy sequence \$\overline{x}\$ = \$\{\overline{x}^n\}_{n \in \mathbb{N}\$ in \$\overline{S}\$ consists of equivalence classes \$\overline{x}^n\$ of Cauchy sequences in \$S\$. Given some representative \$x^n\$ of \$\overline{x}^n\$ show that there is another representative \$x'^n\$ for all \$n \in \mathbb{N}\$ show that the equivalence class in \$\overline{S}\$ of the diagonal sequence \$y\$:= \$\{x'_n^n\}_{n \in \mathbb{N}\$ is a limit of \$\overline{x}\$.]
- Show that there is a natural isometric embedding (i.e., a map that preserves the metric) $i_S : S \to \overline{S}$. Furthermore, show that this is a bijection iff S is complete.

Definition 1.60. The metric space \overline{S} constructed above is called the *completion* of the metric space S.

Proposition 1.61 (Universal property of completion). Let S be a metric space, T a complete metric space and $f: S \to T$ an isometric map. Then, there is a unique isometric map $\overline{f}: \overline{S} \to T$ such that $f = \overline{f} \circ i_S$. Furthermore, the closure of f(S) in T is equal to $\overline{f}(\overline{S})$.

Proof. <u>Exercise</u>.