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FUNCTIONAL ANALYSIS — 2010-2

1 Topological and metric spaces

1.1 Basic Definitions

Definition 1.1 (Topology). Let S be a set. A subset 7 of the set B(S) of
subsets of S is called a topology iff it has the following properties:

e )ecT and SeT.
o Let {Ui}icr be a family of elements in 7. Then | J;c; U; € 7.
e Let U,VeEeT Then UNV €T.

A set equipped with a topology is called a topological space. The elements of
T are called the open sets in S. A complement of an open set in S is called
a closed set.

Definition 1.2. Let S be a topological space and x € S. Then a subset
U C S is called a neighborhood of z iff it contains an open set which in turn
contains .

Definition 1.3. Let S be a topological space and U a subset. The closure
U of U is the smallest closed set containing U. The interior U of U is the
largest open set contained in U.

Definition 1.4 (base). Let 7 be a topology. A subset B of T is called a
base of T iff the elements of 7 are precisely the unions of elements of B. It
is called a subbase iff the elements of 7 are precisely the finite intersections
of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of
a topology on S iff it satisfies all of the following properties:

o ) eB.
o For every x € S there is a set U € B such that x € U.

o Let UV € B. Then there exits a family {Wy}taca of elements of B
such that UNV = Jyen Wa-

Proof. Exercise. O
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Definition 1.6 (Filter). Let S be a set. A subset F of the set P(S) of
subsets of S is called a filter iff it has the following properties:

e )¢ Fand S e F.
e Let U,V eEeF. Then UNV e F.
e LletUcFandUCV CS. ThenV € F.

Definition 1.7. Let F be a filter. A subset B of F is called a base of F iff
every element of F contains an element of .

Proposition 1.8. Let S be a set and B C B(S). Then B is the base of a
filter on S iff it satisfies the following properties:

e )¢ B and B+#0.
o Let U,V € B. Then there exists W € B such that W CUNV.
Proof. Exercise. O

Let S be a topological space and = € S. It is easy to see that the set of
neighborhoods of z forms a filter. It is called the filter of neighborhoods of
and denoted by N. The family of filters of neighborhoods in turn encodes
the topology:

Proposition 1.9. Let S be a topological space and {N,}.es the family of
filters of neighborhoods. Then a subset U of S is open iff for every x € U,
there is a set W, € N, such that W, C U.

Proof. Exercise. O

Proposition 1.10. Let S be a set and {Fy}res an assignment of a filter to
every point in S. Then this family of filters are the filters of neighborhoods
of a topology on S iff they satisfy the following properties:

1. For all x € S, every element of F, contains x.

2. For allx € S and U € F,, there exists W € F, such that U € F, for
ally e W.

Proof. If {F,}.cs are the filters of neighborhoods of a topology it is clear
that the properties are satisfied: 1. Every neighborhood of a point contains
the point itself. 2. For a neighborhood U of x take W to be the interior of
U. Then W is a neighborhood for each point in W.
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Conversely, suppose {F,},cs satisfies Properties 1 and 2. Given z we
define an open neighborhood of = to be an element U € F, such that U € F,
for all y € U. This definition is not empty since at least S itself is an open
neighborhood of every point x in this way. Moreover, for any y € U, by the
same definition, U is an open neighborhood of y. Now take y ¢ U. Then,
by Property 1, U is not an open neighborhood of y. Thus, we obtain a good
definition of open set: An open set is a set that is an open neighborhood for
one (and thus any) of its points. We also declare the empty set to be open.

We proceed to verify the axioms of a topology. Property 1 of Defini-
tion 1.1 holds since S is open and we have declared the empty set to be open.
Let {Ua}aer be a family of open sets and consider their union U = |J, ¢ Ua.-
Assume U is not empty (otherwise it is trivially open) and pick x € U. Thus,
there is o € I such that z € U,. But then U, € F, and also U € F,. This
is true for any « € U. Hence, U is open. Consider now open sets U and V.
Assume the intersection U NV to be non-empty (otherwise its openness is
trivial) and pick a point z in it. Then U € F, and V € F, and therefore
UNV e F,. The same is true for any point in U NV, hence it is open.

It remains to show that {F,},cg are the filters of neighborhoods for the
topology just defined. It is already clear that any open neighborhood of
a point z is contained in F,. We need to show that every element of F,
contains an open neighborhood of z. Take U € F,. We define W to be
the set of points y such that U € F,. This cannot be empty as x € W.
Moreover, Property 1 implies W C U. Let y € W, then U € F, and we can
apply Property 2 to obtain a subset V' C W with V' € F,. But this implies
W € F,. Since the same is true for any y € W we find that W is an open
neighborhood of . This completes the proof. O

Definition 1.11 (Continuity). Let S,T" be topological spaces. A map f :
S — T is called continuous iff for every open set U € T the preimage
f~Y(U) in S is open. We denote the space of continuous maps from S to T

by C(S,T).

Proposition 1.12. Let S,T be topological spaces and f: S — T a map. f
is continuous iff for every x € S : [T (Ny(y) € Ne.

Proof. Exercise. O

Proposition 1.13. Let S,T,U be topological spaces, f € C(S,T) and g €
C(T,U). Then, the composition go f : S — U is continuous.

Proof. Immediate. O
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Definition 1.14 (Induced Topology). Let S be a topological space and U
a subset. Consider the topology given on U by the intersection of each open
set on S with U. This is called the induced topology on U.

Definition 1.15 (Product Topology). Let S be the cartesian product S =
[Iocr Sa of a family of topological spaces. Consider subsets of .S of the form
I1 ac1 Ua where finitely many U, are open sets in S, and the others coincide
with the whole space U, = S,. These subsets form the base of a topology
on S which is called the product topology.

Proposition 1.16. Let S,T, X be topological spaces and f € C(S x T, X).
Then the map f, : T — X defined by f.(y) = f(x,y) is continuous for every
zes.

Proof. Fix x € S. Let U be an open set in X. We want to show that
W = f;}(U) is open. We do this by finding for any y € W an open
neighborhood of y contained in W. If W is empty we are done, hence assume
that this is not so. Pick y € W. Then (x,y) € f~Y(U) with f~1(U) open
by continuity of f. Since S x T carries the product topology there must be
open sets V; € S and Vy C T with x € V,,, y € Vy and V, x V, C f~HU).
But clearly V;, € W and we are done. O

Definition 1.17. Let 77, 73 be topologies on the set S. Then, 7; is called
finer than 73 and 73 is called coarser than 77 iff all open sets of 75 are also
open sets of 77.

Exercise 1. Let S be the cartesian product S = [[,c;Sa of a family of
topological spaces. Show that the product topology is the coarsest topology
on S that makes all projections S — S, continuous.

1.2 Some properties of topological spaces

In a topological space it is useful if two distinct points can be distinguished
by the topology. A strong form of this distinguishability is the Hausdorff

property.
Definition 1.18 (Hausdorff). Let S be a topological space. Assume that
given any two distinct points x,y € S we can find open sets U,V C S such

that z € U andy € V and UNV = (). Then, S is said to have the Hausdorff
property. We also say that S is a Hausdorff space.

Definition 1.19. Let S be a topological space. S is called first-countable iff
for each point in S there exists a countable base of its filter of neighborhoods.
S is called second-countable iff the topology of S admits a countable base.
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Definition 1.20. Let S be a topological space and U,V C S subsets. U is
called dense in V iff V C U.

Definition 1.21 (separable). A topological space is called separable iff it
contains a countable dense subset.

Proposition 1.22. A topological space that is second-countable is separable.
Proof. Exercise. O

Definition 1.23 (open cover). Let S be a topological space and U C S
a subset. A family of open sets {Uy}aca is called an open cover of U iff

U g UaEA Ua'

Proposition 1.24. Let S be a second-countable topological space and U C S
a subset. Then, every open cover of U contains a countable subcover.

Proof. Exercise. O

Definition 1.25 (compact). Let S be a topological space and U C S a sub-
set. U is called compact iff every open cover of U contains a finite subcover.

Proposition 1.26. A closed subset of a compact space is compact. A com-
pact subset of a Hausdorff space is closed.

Proof. Exercise. O

Proposition 1.27. The image of a compact set under a continuous map s
compact.

Proof. Exercise. O

1.3 Sequences and convergence

Definition 1.28 (convergence of sequences). Let x := {z,}nen be a se-
quence of points in a topological space S. We say that x has an accumulation
point (or limit point) p iff for every neighborhood U of z we have z € U
for infinitely many k € N. We say that x converges to a point p iff for any
neighborhood U of p there is a number n € N such that for all & > n :
xp € U.

Proposition 1.29. Let S be a first-countable topological space and x =
{Zn}nen a sequence in S with accumulation point p. Then, x has a subse-
quence that converges to p.
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Proof. By first-countability choose a countable neighborhood base {U,, }nen
at p. Now consider the family {W,,},en of open neighborhoods W, :=
MNr—y Uk at p. It is easy to see that this is again a countable neighborhood
base at p. Moreover, it has the property that W, C W,, if n > m. Now,
Choose n; € N such that z,, € Wj. Recursively, choose ng+1 > ng such
that xp,,, € Wiy1. This is possible since Wy contains infinitely many
points of z. Let V be a neighborhood of p. There exists some k£ € N such
that Uy C V. By construction, then W,, C Wy C Uy for all m > k and
hence x,,, € V for all m > k. Thus, the subsequence {z,,, }men converges
to p. ]

Definition 1.30 (convergence of filters). A filter F on a topological space
S is said to converge to an element p € S iff every neighborhood of p is
contained in F, i.e., N, C F.

Let © = {x,}nen be a sequence of points in a topological space S. We
define the filter F, associated with this sequence as follows: F, contains all
the subsets U of S such that U contains all x,,, except possibly finitely many.

Proposition 1.31. Let x := {xy, }nen be a sequence of points in a topological
space S. Then x converges to a point p € S iff the associated filter Fy
converges to p.

Proof. Exercise. O

Proposition 1.32. Let S be a topological space and U C S a subset. Con-
sider the set Ay of filters on S that contain U. Then, the closure U of U
coincides with the set of points to which some element in Ay converges.

Proof. If U = (), then Ay is empty and the proof is trivial. Assume the
contrary. If x € U, then the intersection of U with the filter NV, of neighbor-
hoods of = generates a filter that contains U and converges to z as desired.
If + ¢ U, then there exists a neighborhood V' of x such that U NV = .
Suppose a filter F converges to . Then F must contain V', hence cannot
contain U, i.e., F ¢ Ay. O

Definition 1.33. Let S be a topological space and U C S a subset. Consider
the set By of sequences of elements of U. Then the set U’ consisting of the

points to which some element of By converges is called the sequential closure
of U.

Proposition 1.34. Let S be a topological space and U C S a subset. Then,
UcCU’CU. If, moreover, S is first-countable, then U =U.
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Proof. Exercise. O

Proposition 1.35. Let S,T be topological spaces, f € C(S,T) and {xn}nen
a sequence in S converging to p. Then, the sequence f{(zn)}nen in T con-

verges to f(p).

Proof. Exercise. O

Proposition 1.36. Let S be a Hausdorff topological space, F a filter on S
converging to a point p € S. Then F does not converge to any other point

m S.
Proof. Exercise. O

Corollary 1.37. Let S be Hausdorff space and {xn}nen a sequence in S
which converges to a point p € S. Then, {x,}nen does not converge to any
other point in S.

Definition 1.38. Let S be a topological space and U C S a subset. U is
called lrmit point compact iff every sequence in U has an accumulation point.
U is called sequentially compact iff every sequence in U contains a converging
subsequence.

Proposition 1.39. Sequential compactness implies limit point compactness.
In a first-countable space the converse is also true.

Proof. Exercise. O
Proposition 1.40. A compact space is limit point compact.

Proof. Consider a sequence x in a compact space S. Suppose z does not have
an accumulation point. Then, for each point p € S we can choose an open
neighborhood U, which contains only finitely many points of . However, by
compactness, S is covered by finitely many of the sets U,. But their union
can only contain a finite number of points of z, a contradiction. O

1.4 DMetric spaces

Definition 1.41. Let S be aset and d : S x § — Rar a map with the
following properties:

o d(x,y) =d(y,x) Vz,y € S. (symmetry)

o d(x,z) <d(xz,y)+d(y,z) Vz,y,z € S. (triangle inequality)
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e d(z,y) =0 = xz =y Vz,y € S. (definiteness)
Then d is called a metric on S. S is also called a metric space.

Definition 1.42. If in the above definition the third condition is weakened
to

o d(x,x) =0 Vxes,
then d is called a pseudometric and S a pseudometric space.

Definition 1.43. Let S be a pseudometric space, z € S and r > 0. Then
the set By(z) := {y € S : d(z,y) < r} is called the open ball of radius r
centered around x in S. The set B,(x) := {y € S : d(z,y) < r} is called the
closed ball of radius r centered around z in S.

Proposition 1.44. Let S be a pseudometric space. Then, the open balls
in S together with the empty set form the basis of a topology on S. This
topology is first-countable and such that closed balls are closed. Moreover,
the topology is Hausdorff iff S is metric.

Proof. Exercise. O

Definition 1.45. A topological space is called metrizable iff there exists a
metric such that the open balls given by the metric are a basis of its topology.

Proposition 1.46. Let S be a set equipped with two metrics d* and d?.
Then, the topology generated by d? is finer than the topology generated by d*
iff for all x € S and 1 > 0 there exists ro > 0 such that B% (z) C B} ().
In particular, d* and d*> generate the same topology iff the condition holds
both ways.

Proof. Exercise. O

Proposition 1.47 (epsilon-delta criterion). Let S, T' be metric spaces and

f:8—T amap. Then, f is continuous iff for every x € S and every e > 0
there exists § > 0 such that f(Bs(x)) C Be(f(x)).

Proof. Exercise. O
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1.5 Elementary properties of metric spaces

Proposition 1.48. Let S be a metric space and x := {xy}nen a sequence
in S. Then x converges to p € S iff for any € > 0 there exists an nyg € N
such that for alln > ng : d(zy,p) < €.

Proof. Immediate. O

Definition 1.49. Let S be a metric space and = := {x, }nen a sequence in
S. Then z is called a Cauchy sequence iff for all € > 0 there exists an ng € N
such that for all n,m > ng : d(zp, zm) < €.

Proposition 1.50. Any converging sequence in a metric space is a Cauchy
sequence.

Proof. Exercise. O

Proposition 1.51. Suppose x is a Cauchy sequence in a metric space. If p
18 accumulation point of © then x converges to p.

Proof. Exercise. O

Definition 1.52. Let S be a metric space and U C S a subset. If every
Cauchy sequence in U converges to a point in U then U is called complete.

Proposition 1.53. A complete subset of a metric space is closed. A closed
subset of a complete metric space is complete.

Proof. Exercise. O

Definition 1.54 (Totally boundedness). Let S be a metric space. A subset
U C S is called totally bounded iff for any r > 0 the set U admits a cover by
finitely many open balls of radius 7.

Proposition 1.55. A subset of a metric space is compact iff it is complete
and totally bounded.

Proof. We first show that compactness implies totally boundedness and com-
pleteness. Let U be a compact subset. Then, for » > 0 cover U by open balls
of radius r centered at every point of U. Since U is compact, finitely many
balls will cover it. Hence, U is totally bounded. Now, consider a Cauchy
sequence x in U. Since U is compact & must have an accumulation point
p € U (Proposition 1.40) and hence (Proposition 1.51) converge to p. Thus,
U is complete.
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We proceed to show that completeness together with totally bounded-
ness imply compactness. Let U be a complete and totally bounded subset.
Assume U is not compact and choose a covering {Uy}aca of U that does
not admit a finite subcovering. On the other hand, U is totally bounded and
admits a covering by finitely many open balls of radius 1/2. Hence, there
must be at least one such ball By such that C; := By NU is not covered
by finitely many U,. Choose a point z; in Cj. Observe that C] itself is
totally bounded. Inductively, cover C), by finitely many open balls of radius
2-(n+1) " For at least one of those, call it Byy1, Cha1 := Bpt1 N C, is not
covered by finitely many U,. Choose a point x,11 in Cp4+1. This process
yields a Cauchy sequence = := {zj}ren. Since U is complete the sequence
converges to a point p € U. There must be o € A such that p € U,. Since
U, is open there exists r > 0 such that B,(p) C U,. This implies, C,, C U,
for all n € N such that 27"*! < ». However, this is a contradiction to the
C,, not being finitely covered. Hence, U must be compact. O

Proposition 1.56. The notions of compactness, limit point compactness
and sequential compactness are equivalent in a metric space.

Proof. Exercise. O
Proposition 1.57. A totally bounded metric space is second-countable.
Proof. Exercise. O

Proposition 1.58. The notions of separability and second-countability are
equivalent in a metric space.

Proof. Exercise. O

Theorem 1.59 (Baire’s Theorem). Let S be a complete metric space and

{Un}nen a sequence of open and dense subsets of S. Then, the intersection
ﬂneN U,, is dense in S.

Proof. Set U := (),ey Un- Let V be an arbitrary open set in S. It suffices
to show that V.NU # (. To this end we construct a sequence {z,}nen
of elements of S and a sequence {e,}nen of positive numbers. Choose
1 € Uy NV and then 0 < €¢; < 1 such that B, (z1) € Uy N V. Now,
consecutively choose xpy1 € Uny1 N B, j2(zn) and 0 < €41 < 277 such
that B, (nt+1) € Upy1 N B, (z,). The sequence {x,}nen is Cauchy since
by construction d(zy,zp+1) < 27" for all n € N. So by completeness it
converges to some point z € S. Indeed, z € B, (x1) C V. On the other
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hand, z € B, (z,) C U, for all n € N and hence € U. This completes the
proof. O

Exercise 2. Give an example of a set S, a sequence z in S and two metrics
d' and d? on S that generate the same topology, but such that z is Cauchy
with respect to d', but not with respect to d2.

1.6 Completion of metric spaces

Often it is desirable to work with a complete metric space when one is only
given a non-complete metric space. To this end one can construct the com-
pletion of a metric space. This is detailed in the following exercise.

Exercise 3. Let S be a metric space.

o Let x := {zn}nen and y := {yn }nen be Cauchy sequences in S. Show
that the limit lim, o d(xy, y,) exists.

e Let T be the set of Cauchy sequences in S. Define the function d:
T xT — R{ by d(x,y) = lim, o d(p, yn). Show that d defines a
pseudometric on T'.

e Show that a ~ b <= d(a,b) = 0 defines an equivalence relation on
T.

e Show that S := T/ ~ is naturally a metric space.

e Show that S is complete. [Hint: First show that given a Cauchy se-
quence z in S and a subsequence 2’/ of 2 we have d(z,z') = 0. That
is, x ~ y in T. Use this to show that for any Cauchy sequence x in
S an equivalent Cauchy Sequence 2’ can be constructed which has a
specific asymptotic behavior. For example, 2’ can be made to satisfy

d(xl,z) ) < m Now a Cauchy sequence & = {2"},cn in S con-

sists of equivalence classes 2™ of Cauchy sequences in S. Given some

representative 2™ of 2" show that there is another representative x’"

with specific asymptotic behavior. Using such representatives z/" for

all n € N show that the equivalence class in S of the diagonal sequence

y = {2} }nen is a limit of .|

e Show that there is a natural isometric embedding (i.e., a map that
preserves the metric) ig : S — S. Furthermore, show that this is a
bijection iff S is complete.
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Definition 1.60. The metric space S constructed above is called the com-
pletion of the metric space S.

Proposition 1.61 (Universal property of completion). Let S be a metric
space, T a complete metric space and f : S — T an isometric map. Then,
there is a unique isometric map f : S — T such that f = foig. Furthermore,
the closure of f(S) in T is equal to f(S).

Proof. Exercise. O



