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FUNCTIONAL ANALYSIS � 2010-2

1 Topological and metric spaces

1.1 Basic De�nitions

De�nition 1.1 (Topology). Let S be a set. A subset T of the set P(S) of
subsets of S is called a topology i� it has the following properties:

• ∅ ∈ T and S ∈ T .

• Let {Ui}i∈I be a family of elements in T . Then
∪

i∈I Ui ∈ T .

• Let U, V ∈ T . Then U ∩ V ∈ T .

A set equipped with a topology is called a topological space. The elements of
T are called the open sets in S. A complement of an open set in S is called
a closed set.

De�nition 1.2. Let S be a topological space and x ∈ S. Then a subset
U ⊆ S is called a neighborhood of x i� it contains an open set which in turn
contains x.

De�nition 1.3. Let S be a topological space and U a subset. The closure

U of U is the smallest closed set containing U . The interior
◦
U of U is the

largest open set contained in U .

De�nition 1.4 (base). Let T be a topology. A subset B of T is called a
base of T i� the elements of T are precisely the unions of elements of B. It
is called a subbase i� the elements of T are precisely the �nite intersections
of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of

a topology on S i� it satis�es all of the following properties:

• ∅ ∈ B.

• For every x ∈ S there is a set U ∈ B such that x ∈ U .

• Let U, V ∈ B. Then there exits a family {Wα}α∈A of elements of B
such that U ∩ V =

∪
α∈A Wα.

Proof. Exercise.
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De�nition 1.6 (Filter). Let S be a set. A subset F of the set P(S) of
subsets of S is called a �lter i� it has the following properties:

• ∅ /∈ F and S ∈ F .

• Let U, V ∈ F . Then U ∩ V ∈ F .

• Let U ∈ F and U ⊆ V ⊆ S. Then V ∈ F .

De�nition 1.7. Let F be a �lter. A subset B of F is called a base of F i�
every element of F contains an element of B.

Proposition 1.8. Let S be a set and B ⊆ P(S). Then B is the base of a

�lter on S i� it satis�es the following properties:

• ∅ /∈ B and B 6= ∅.

• Let U, V ∈ B. Then there exists W ∈ B such that W ⊆ U ∩ V .

Proof. Exercise.

Let S be a topological space and x ∈ S. It is easy to see that the set of
neighborhoods of x forms a �lter. It is called the �lter of neighborhoods of x
and denoted by Nx. The family of �lters of neighborhoods in turn encodes
the topology:

Proposition 1.9. Let S be a topological space and {Nx}x∈S the family of

�lters of neighborhoods. Then a subset U of S is open i� for every x ∈ U ,

there is a set Wx ∈ Nx such that Wx ⊆ U .

Proof. Exercise.

Proposition 1.10. Let S be a set and {Fx}x∈S an assignment of a �lter to

every point in S. Then this family of �lters are the �lters of neighborhoods

of a topology on S i� they satisfy the following properties:

1. For all x ∈ S, every element of Fx contains x.

2. For all x ∈ S and U ∈ Fx, there exists W ∈ Fx such that U ∈ Fy for

all y ∈ W .

Proof. If {Fx}x∈S are the �lters of neighborhoods of a topology it is clear
that the properties are satis�ed: 1. Every neighborhood of a point contains
the point itself. 2. For a neighborhood U of x take W to be the interior of
U . Then W is a neighborhood for each point in W .
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Conversely, suppose {Fx}x∈S satis�es Properties 1 and 2. Given x we
de�ne an open neighborhood of x to be an element U ∈ Fx such that U ∈ Fy

for all y ∈ U . This de�nition is not empty since at least S itself is an open
neighborhood of every point x in this way. Moreover, for any y ∈ U , by the
same de�nition, U is an open neighborhood of y. Now take y /∈ U . Then,
by Property 1, U is not an open neighborhood of y. Thus, we obtain a good
de�nition of open set: An open set is a set that is an open neighborhood for
one (and thus any) of its points. We also declare the empty set to be open.

We proceed to verify the axioms of a topology. Property 1 of De�ni-
tion 1.1 holds since S is open and we have declared the empty set to be open.
Let {Uα}α∈I be a family of open sets and consider their union U =

∪
α∈I Uα.

Assume U is not empty (otherwise it is trivially open) and pick x ∈ U . Thus,
there is α ∈ I such that x ∈ Uα. But then Uα ∈ Fx and also U ∈ Fx. This
is true for any x ∈ U . Hence, U is open. Consider now open sets U and V .
Assume the intersection U ∩ V to be non-empty (otherwise its openness is
trivial) and pick a point x in it. Then U ∈ Fx and V ∈ Fx and therefore
U ∩ V ∈ Fx. The same is true for any point in U ∩ V , hence it is open.

It remains to show that {Fx}x∈S are the �lters of neighborhoods for the
topology just de�ned. It is already clear that any open neighborhood of
a point x is contained in Fx. We need to show that every element of Fx

contains an open neighborhood of x. Take U ∈ Fx. We de�ne W to be
the set of points y such that U ∈ Fy. This cannot be empty as x ∈ W .
Moreover, Property 1 implies W ⊆ U . Let y ∈ W , then U ∈ Fy and we can
apply Property 2 to obtain a subset V ⊆ W with V ∈ Fy. But this implies
W ∈ Fy. Since the same is true for any y ∈ W we �nd that W is an open
neighborhood of x. This completes the proof.

De�nition 1.11 (Continuity). Let S, T be topological spaces. A map f :
S → T is called continuous i� for every open set U ∈ T the preimage
f−1(U) in S is open. We denote the space of continuous maps from S to T
by C(S, T ).

Proposition 1.12. Let S, T be topological spaces and f : S → T a map. f
is continuous i� for every x ∈ S : f−1(Nf(x)) ⊆ Nx.

Proof. Exercise.

Proposition 1.13. Let S, T, U be topological spaces, f ∈ C(S, T ) and g ∈
C(T, U). Then, the composition g ◦ f : S → U is continuous.

Proof. Immediate.
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De�nition 1.14 (Induced Topology). Let S be a topological space and U
a subset. Consider the topology given on U by the intersection of each open
set on S with U . This is called the induced topology on U .

De�nition 1.15 (Product Topology). Let S be the cartesian product S =∏
α∈I Sα of a family of topological spaces. Consider subsets of S of the form∏
α∈I Uα where �nitely many Uα are open sets in Sα and the others coincide

with the whole space Uα = Sα. These subsets form the base of a topology
on S which is called the product topology.

Proposition 1.16. Let S, T, X be topological spaces and f ∈ C(S × T,X).
Then the map fx : T → X de�ned by fx(y) = f(x, y) is continuous for every

x ∈ S.

Proof. Fix x ∈ S. Let U be an open set in X. We want to show that
W := f−1

x (U) is open. We do this by �nding for any y ∈ W an open
neighborhood of y contained in W . If W is empty we are done, hence assume
that this is not so. Pick y ∈ W . Then (x, y) ∈ f−1(U) with f−1(U) open
by continuity of f . Since S × T carries the product topology there must be
open sets Vx ⊆ S and Vy ⊆ T with x ∈ Vx, y ∈ Vy and Vx × Vy ⊆ f−1(U).
But clearly Vy ⊆ W and we are done.

De�nition 1.17. Let T1, T2 be topologies on the set S. Then, T1 is called
�ner than T2 and T2 is called coarser than T1 i� all open sets of T2 are also
open sets of T1.

Exercise 1. Let S be the cartesian product S =
∏

α∈I Sα of a family of
topological spaces. Show that the product topology is the coarsest topology
on S that makes all projections S → Sα continuous.

1.2 Some properties of topological spaces

In a topological space it is useful if two distinct points can be distinguished
by the topology. A strong form of this distinguishability is the Hausdor�

property.

De�nition 1.18 (Hausdor�). Let S be a topological space. Assume that
given any two distinct points x, y ∈ S we can �nd open sets U, V ⊂ S such
that x ∈ U and y ∈ V and U ∩V = ∅. Then, S is said to have the Hausdor�
property. We also say that S is a Hausdor� space.

De�nition 1.19. Let S be a topological space. S is called �rst-countable i�
for each point in S there exists a countable base of its �lter of neighborhoods.
S is called second-countable i� the topology of S admits a countable base.
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De�nition 1.20. Let S be a topological space and U, V ⊆ S subsets. U is
called dense in V i� V ⊆ U .

De�nition 1.21 (separable). A topological space is called separable i� it
contains a countable dense subset.

Proposition 1.22. A topological space that is second-countable is separable.

Proof. Exercise.

De�nition 1.23 (open cover). Let S be a topological space and U ⊆ S
a subset. A family of open sets {Uα}α∈A is called an open cover of U i�
U ⊆

∪
α∈A Uα.

Proposition 1.24. Let S be a second-countable topological space and U ⊆ S
a subset. Then, every open cover of U contains a countable subcover.

Proof. Exercise.

De�nition 1.25 (compact). Let S be a topological space and U ⊆ S a sub-
set. U is called compact i� every open cover of U contains a �nite subcover.

Proposition 1.26. A closed subset of a compact space is compact. A com-

pact subset of a Hausdor� space is closed.

Proof. Exercise.

Proposition 1.27. The image of a compact set under a continuous map is

compact.

Proof. Exercise.

1.3 Sequences and convergence

De�nition 1.28 (convergence of sequences). Let x := {xn}n∈N be a se-
quence of points in a topological space S. We say that x has an accumulation

point (or limit point) p i� for every neighborhood U of x we have xk ∈ U
for in�nitely many k ∈ N. We say that x converges to a point p i� for any
neighborhood U of p there is a number n ∈ N such that for all k ≥ n :
xk ∈ U .

Proposition 1.29. Let S be a �rst-countable topological space and x =
{xn}n∈N a sequence in S with accumulation point p. Then, x has a subse-

quence that converges to p.
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Proof. By �rst-countability choose a countable neighborhood base {Un}n∈N
at p. Now consider the family {Wn}n∈N of open neighborhoods Wn :=∩n

k=1 Uk at p. It is easy to see that this is again a countable neighborhood
base at p. Moreover, it has the property that Wn ⊆ Wm if n ≥ m. Now,
Choose n1 ∈ N such that xn1 ∈ W1. Recursively, choose nk+1 > nk such
that xnk+1

∈ Wk+1. This is possible since Wk+1 contains in�nitely many
points of x. Let V be a neighborhood of p. There exists some k ∈ N such
that Uk ⊆ V . By construction, then Wm ⊆ Wk ⊆ Uk for all m ≥ k and
hence xnm ∈ V for all m ≥ k. Thus, the subsequence {xnm}m∈N converges
to p.

De�nition 1.30 (convergence of �lters). A �lter F on a topological space
S is said to converge to an element p ∈ S i� every neighborhood of p is
contained in F , i.e., Np ⊆ F .

Let x = {xn}n∈N be a sequence of points in a topological space S. We
de�ne the �lter Fx associated with this sequence as follows: Fx contains all
the subsets U of S such that U contains all xn, except possibly �nitely many.

Proposition 1.31. Let x := {xn}n∈N be a sequence of points in a topological

space S. Then x converges to a point p ∈ S i� the associated �lter Fx

converges to p.

Proof. Exercise.

Proposition 1.32. Let S be a topological space and U ⊆ S a subset. Con-

sider the set AU of �lters on S that contain U . Then, the closure U of U
coincides with the set of points to which some element in AU converges.

Proof. If U = ∅, then AU is empty and the proof is trivial. Assume the
contrary. If x ∈ U , then the intersection of U with the �lter Nx of neighbor-
hoods of x generates a �lter that contains U and converges to x as desired.
If x /∈ U , then there exists a neighborhood V of x such that U ∩ V = ∅.
Suppose a �lter F converges to x. Then F must contain V , hence cannot
contain U , i.e., F /∈ AU .

De�nition 1.33. Let S be a topological space and U ⊆ S a subset. Consider
the set BU of sequences of elements of U . Then the set U

s
consisting of the

points to which some element of BU converges is called the sequential closure
of U .

Proposition 1.34. Let S be a topological space and U ⊆ S a subset. Then,

U ⊆ U
s ⊆ U . If, moreover, S is �rst-countable, then U

s = U .
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Proof. Exercise.

Proposition 1.35. Let S, T be topological spaces, f ∈ C(S, T ) and {xn}n∈N
a sequence in S converging to p. Then, the sequence f{(xn)}n∈N in T con-

verges to f(p).

Proof. Exercise.

Proposition 1.36. Let S be a Hausdor� topological space, F a �lter on S
converging to a point p ∈ S. Then F does not converge to any other point

in S.

Proof. Exercise.

Corollary 1.37. Let S be Hausdor� space and {xn}n∈N a sequence in S
which converges to a point p ∈ S. Then, {xn}n∈N does not converge to any

other point in S.

De�nition 1.38. Let S be a topological space and U ⊆ S a subset. U is
called limit point compact i� every sequence in U has an accumulation point.
U is called sequentially compact i� every sequence in U contains a converging
subsequence.

Proposition 1.39. Sequential compactness implies limit point compactness.

In a �rst-countable space the converse is also true.

Proof. Exercise.

Proposition 1.40. A compact space is limit point compact.

Proof. Consider a sequence x in a compact space S. Suppose x does not have
an accumulation point. Then, for each point p ∈ S we can choose an open
neighborhood Up which contains only �nitely many points of x. However, by
compactness, S is covered by �nitely many of the sets Up. But their union
can only contain a �nite number of points of x, a contradiction.

1.4 Metric spaces

De�nition 1.41. Let S be a set and d : S × S → R+
0 a map with the

following properties:

• d(x, y) = d(y, x) ∀x, y ∈ S. (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ S. (triangle inequality)
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• d(x, y) = 0 =⇒ x = y ∀x, y ∈ S. (de�niteness)

Then d is called a metric on S. S is also called a metric space.

De�nition 1.42. If in the above de�nition the third condition is weakened
to

• d(x, x) = 0 ∀x ∈ S,

then d is called a pseudometric and S a pseudometric space.

De�nition 1.43. Let S be a pseudometric space, x ∈ S and r > 0. Then
the set Br(x) := {y ∈ S : d(x, y) < r} is called the open ball of radius r
centered around x in S. The set Br(x) := {y ∈ S : d(x, y) ≤ r} is called the
closed ball of radius r centered around x in S.

Proposition 1.44. Let S be a pseudometric space. Then, the open balls

in S together with the empty set form the basis of a topology on S. This

topology is �rst-countable and such that closed balls are closed. Moreover,

the topology is Hausdor� i� S is metric.

Proof. Exercise.

De�nition 1.45. A topological space is called metrizable i� there exists a
metric such that the open balls given by the metric are a basis of its topology.

Proposition 1.46. Let S be a set equipped with two metrics d1 and d2.

Then, the topology generated by d2 is �ner than the topology generated by d1

i� for all x ∈ S and r1 > 0 there exists r2 > 0 such that B2
r2

(x) ⊆ B1
r1

(x).
In particular, d1 and d2 generate the same topology i� the condition holds

both ways.

Proof. Exercise.

Proposition 1.47 (epsilon-delta criterion). Let S, T be metric spaces and

f : S → T a map. Then, f is continuous i� for every x ∈ S and every ε > 0
there exists δ > 0 such that f(Bδ(x)) ⊆ Bε(f(x)).

Proof. Exercise.
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1.5 Elementary properties of metric spaces

Proposition 1.48. Let S be a metric space and x := {xn}n∈N a sequence

in S. Then x converges to p ∈ S i� for any ε > 0 there exists an n0 ∈ N
such that for all n ≥ n0 : d(xn, p) < ε.

Proof. Immediate.

De�nition 1.49. Let S be a metric space and x := {xn}n∈N a sequence in
S. Then x is called a Cauchy sequence i� for all ε > 0 there exists an n0 ∈ N
such that for all n,m ≥ n0 : d(xn, xm) < ε.

Proposition 1.50. Any converging sequence in a metric space is a Cauchy

sequence.

Proof. Exercise.

Proposition 1.51. Suppose x is a Cauchy sequence in a metric space. If p
is accumulation point of x then x converges to p.

Proof. Exercise.

De�nition 1.52. Let S be a metric space and U ⊆ S a subset. If every
Cauchy sequence in U converges to a point in U then U is called complete.

Proposition 1.53. A complete subset of a metric space is closed. A closed

subset of a complete metric space is complete.

Proof. Exercise.

De�nition 1.54 (Totally boundedness). Let S be a metric space. A subset
U ⊆ S is called totally bounded i� for any r > 0 the set U admits a cover by
�nitely many open balls of radius r.

Proposition 1.55. A subset of a metric space is compact i� it is complete

and totally bounded.

Proof. We �rst show that compactness implies totally boundedness and com-
pleteness. Let U be a compact subset. Then, for r > 0 cover U by open balls
of radius r centered at every point of U . Since U is compact, �nitely many
balls will cover it. Hence, U is totally bounded. Now, consider a Cauchy
sequence x in U . Since U is compact x must have an accumulation point
p ∈ U (Proposition 1.40) and hence (Proposition 1.51) converge to p. Thus,
U is complete.
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We proceed to show that completeness together with totally bounded-
ness imply compactness. Let U be a complete and totally bounded subset.
Assume U is not compact and choose a covering {Uα}α∈A of U that does
not admit a �nite subcovering. On the other hand, U is totally bounded and
admits a covering by �nitely many open balls of radius 1/2. Hence, there
must be at least one such ball B1 such that C1 := B1 ∩ U is not covered
by �nitely many Uα. Choose a point x1 in C1. Observe that C1 itself is
totally bounded. Inductively, cover Cn by �nitely many open balls of radius
2−(n+1). For at least one of those, call it Bn+1, Cn+1 := Bn+1 ∩ Cn is not
covered by �nitely many Uα. Choose a point xn+1 in Cn+1. This process
yields a Cauchy sequence x := {xk}k∈N. Since U is complete the sequence
converges to a point p ∈ U . There must be α ∈ A such that p ∈ Uα. Since
Uα is open there exists r > 0 such that Br(p) ⊆ Uα. This implies, Cn ⊆ Uα

for all n ∈ N such that 2−n+1 < r. However, this is a contradiction to the
Cn not being �nitely covered. Hence, U must be compact.

Proposition 1.56. The notions of compactness, limit point compactness

and sequential compactness are equivalent in a metric space.

Proof. Exercise.

Proposition 1.57. A totally bounded metric space is second-countable.

Proof. Exercise.

Proposition 1.58. The notions of separability and second-countability are

equivalent in a metric space.

Proof. Exercise.

Theorem 1.59 (Baire's Theorem). Let S be a complete metric space and

{Un}n∈N a sequence of open and dense subsets of S. Then, the intersection∩
n∈N Un is dense in S.

Proof. Set U :=
∩

n∈N Un. Let V be an arbitrary open set in S. It su�ces
to show that V ∩ U 6= ∅. To this end we construct a sequence {xn}n∈N
of elements of S and a sequence {εn}n∈N of positive numbers. Choose
x1 ∈ U1 ∩ V and then 0 < ε1 ≤ 1 such that Bε1(x1) ⊆ U1 ∩ V . Now,
consecutively choose xn+1 ∈ Un+1 ∩ Bεn/2(xn) and 0 < εn+1 < 2−n such

that Bεn+1(xn+1) ⊆ Un+1 ∩Bεn(xn). The sequence {xn}n∈N is Cauchy since
by construction d(xn, xn+1) < 2−n for all n ∈ N. So by completeness it
converges to some point x ∈ S. Indeed, x ∈ Bε1(x1) ⊆ V . On the other
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hand, x ∈ Bεn(xn) ⊆ Un for all n ∈ N and hence x ∈ U . This completes the
proof.

Exercise 2. Give an example of a set S, a sequence x in S and two metrics
d1 and d2 on S that generate the same topology, but such that x is Cauchy
with respect to d1, but not with respect to d2.

1.6 Completion of metric spaces

Often it is desirable to work with a complete metric space when one is only
given a non-complete metric space. To this end one can construct the com-

pletion of a metric space. This is detailed in the following exercise.

Exercise 3. Let S be a metric space.

• Let x := {xn}n∈N and y := {yn}n∈N be Cauchy sequences in S. Show
that the limit limn→∞ d(xn, yn) exists.

• Let T be the set of Cauchy sequences in S. De�ne the function d̃ :
T × T → R+

0 by d̃(x, y) := limn→∞ d(xn, yn). Show that d̃ de�nes a
pseudometric on T .

• Show that a ∼ b ⇐⇒ d̃(a, b) = 0 de�nes an equivalence relation on
T .

• Show that S := T/ ∼ is naturally a metric space.

• Show that S is complete. [Hint: First show that given a Cauchy se-
quence x in S and a subsequence x′ of x we have d̃(x, x′) = 0. That
is, x ∼ y in T . Use this to show that for any Cauchy sequence x in
S an equivalent Cauchy Sequence x′ can be constructed which has a
speci�c asymptotic behavior. For example, x′ can be made to satisfy
d(x′

n, x′
m) < 1

min(m,n) . Now a Cauchy sequence x̂ = {x̂n}n∈N in S con-
sists of equivalence classes x̂n of Cauchy sequences in S. Given some
representative xn of x̂n show that there is another representative x′n

with speci�c asymptotic behavior. Using such representatives x′n for
all n ∈ N show that the equivalence class in S of the diagonal sequence
y := {x′n

n}n∈N is a limit of x̂.]

• Show that there is a natural isometric embedding (i.e., a map that
preserves the metric) iS : S → S. Furthermore, show that this is a
bijection i� S is complete.
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De�nition 1.60. The metric space S constructed above is called the com-

pletion of the metric space S.

Proposition 1.61 (Universal property of completion). Let S be a metric

space, T a complete metric space and f : S → T an isometric map. Then,

there is a unique isometric map f : S → T such that f = f ◦iS. Furthermore,

the closure of f(S) in T is equal to f(S).

Proof. Exercise.


